mirror of
https://codeberg.org/ziglings/exercises.git
synced 2025-06-06 15:54:47 +00:00
moved explanatory content below the broken code in
main so that the exercise functions more like a quiz
This commit is contained in:
parent
20596bc290
commit
a7cd808bb8
@ -68,40 +68,31 @@ const testing = std.testing;
|
|||||||
|
|
||||||
pub fn main() !void {
|
pub fn main() !void {
|
||||||
var PORTB: u4 = 0b0000; // only 4 bits wide for simplicity
|
var PORTB: u4 = 0b0000; // only 4 bits wide for simplicity
|
||||||
|
|
||||||
|
// The LCD display on our robot is not behaving as expected. In order to
|
||||||
|
// get it functioning properly, we must initialize it by sending the
|
||||||
|
// correct sequence of half-bytes to PORTB's lower four pins.
|
||||||
//
|
//
|
||||||
// Let's first take a look at toggling bits.
|
// See if you can solve the following problems to get the lcd working and
|
||||||
|
// reveal the message our robot has stored in his EEPROM.
|
||||||
//
|
//
|
||||||
// ------------------------------------------------------------------------
|
// .--. .--.
|
||||||
// Toggling bits with XOR:
|
// | | | |
|
||||||
// ------------------------------------------------------------------------
|
// +--------------------------+
|
||||||
// XOR stands for "exclusive or". We can toggle bits with the ^ (XOR)
|
// | +----------------------+ |
|
||||||
// bitwise operator, like so:
|
// | | | |
|
||||||
|
// | | XXXXXXXX XXXXXXXX | | <-- LCD
|
||||||
|
// | | | |
|
||||||
|
// | +----------------------+ |
|
||||||
|
// | _________ |
|
||||||
|
// | |_|_|_|_|_| |
|
||||||
|
// | |
|
||||||
|
// +--------------------------+
|
||||||
|
// | |
|
||||||
//
|
//
|
||||||
//
|
// The last two problems throw you a bit of a curve ball. Try solving them
|
||||||
// In order to output a 1, the logic of an XOR operation requires that the
|
// on your own. If you need help, scroll to the bottom to see some in depth
|
||||||
// two input bits are of different values. Therefore, 0 ^ 1 and 1 ^ 0 will
|
// explanations on toggling, setting, and clearing bits in Zig.
|
||||||
// both yield a 1 but 0 ^ 0 and 1 ^ 1 will output 0. XOR's unique behavior
|
|
||||||
// of outputing a 0 when both inputs are 1s is what makes it different from
|
|
||||||
// the OR operator; it also gives us the ability to toggle bits by putting
|
|
||||||
// 1s into our bitmask.
|
|
||||||
//
|
|
||||||
// - 1s in our bitmask operand, can be thought of as causing the
|
|
||||||
// corresponding bits in the other operand to flip to the opposite value.
|
|
||||||
// - 0s cause no change.
|
|
||||||
//
|
|
||||||
// The 0s in our bitmask preserve these values
|
|
||||||
// -XOR op- ---expanded--- in the output.
|
|
||||||
// _______________/
|
|
||||||
// / /
|
|
||||||
// 0110 1 1 0 0
|
|
||||||
// ^ 1111 0 1 0 1 (bitmask)
|
|
||||||
// ------ - - - -
|
|
||||||
// = 1001 1 0 0 1 <- This bit was already cleared.
|
|
||||||
// \_______\
|
|
||||||
// \
|
|
||||||
// We can think of these bits having flipped
|
|
||||||
// because of the presence of 1s in those columns
|
|
||||||
// of our bitmask.
|
|
||||||
|
|
||||||
print("Toggle pins with XOR on PORTB\n", .{});
|
print("Toggle pins with XOR on PORTB\n", .{});
|
||||||
print("-----------------------------\n", .{});
|
print("-----------------------------\n", .{});
|
||||||
@ -121,49 +112,6 @@ pub fn main() !void {
|
|||||||
|
|
||||||
newline();
|
newline();
|
||||||
|
|
||||||
// Now let's take a look at setting bits with the | operator.
|
|
||||||
//
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// Setting bits with OR:
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// We can set bits on PORTB with the | (OR) operator, like so:
|
|
||||||
//
|
|
||||||
// var PORTB: u4 = 0b1001;
|
|
||||||
// PORTB = PORTB | 0b0010;
|
|
||||||
// print("PORTB: {b:0>4}\n", .{PORTB}); // output: 1011
|
|
||||||
//
|
|
||||||
// -OR op- ---expanded---
|
|
||||||
// _ Set only this bit.
|
|
||||||
// /
|
|
||||||
// 1001 1 0 0 1
|
|
||||||
// | 0010 0 0 1 0 (bit mask)
|
|
||||||
// ------ - - - -
|
|
||||||
// = 1011 1 0 1 1
|
|
||||||
// \___\_______\
|
|
||||||
// \
|
|
||||||
// These bits remain untouched because OR-ing with
|
|
||||||
// a 0 effects no change.
|
|
||||||
//
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// To create a bit mask like 0b0010 used above:
|
|
||||||
//
|
|
||||||
// 1. First, shift the value 1 over one place with the bitwise << (shift
|
|
||||||
// left) operator as indicated below:
|
|
||||||
// 1 << 0 -> 0001
|
|
||||||
// 1 << 1 -> 0010 <-- Shift 1 one place to the left
|
|
||||||
// 1 << 2 -> 0100
|
|
||||||
// 1 << 3 -> 1000
|
|
||||||
//
|
|
||||||
// This allows us to rewrite the above code like this:
|
|
||||||
//
|
|
||||||
// var PORTB: u4 = 0b1001;
|
|
||||||
// PORTB = PORTB | (1 << 1);
|
|
||||||
// print("PORTB: {b:0>4}\n", .{PORTB}); // output: 1011
|
|
||||||
//
|
|
||||||
// Finally, as in the C language, Zig allows us to use the |= operator, so
|
|
||||||
// we can rewrite our code again in an even more compact and idiomatic
|
|
||||||
// form: PORTB |= (1 << 1)
|
|
||||||
|
|
||||||
print("Set pins with OR on PORTB\n", .{});
|
print("Set pins with OR on PORTB\n", .{});
|
||||||
print("-------------------------\n", .{});
|
print("-------------------------\n", .{});
|
||||||
|
|
||||||
@ -183,86 +131,6 @@ pub fn main() !void {
|
|||||||
|
|
||||||
newline();
|
newline();
|
||||||
|
|
||||||
// So now we've covered how to toggle and set bits. What about clearing
|
|
||||||
// them? Well, this is where Zig throws us a curve ball. Don't worry we'll
|
|
||||||
// go through it step by step.
|
|
||||||
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// Clearing bits with AND and NOT:
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// We can clear bits with the & (AND) bitwise operator, like so:
|
|
||||||
|
|
||||||
// PORTB = 0b1110; // reset PORTB
|
|
||||||
// PORTB = PORTB & 0b1011;
|
|
||||||
// print("PORTB: {b:0>4}\n", .{PORTB}); // output -> 1010
|
|
||||||
//
|
|
||||||
// - 0s clear bits when used in conjuction with a bitwise AND.
|
|
||||||
// - 1s do nothing, thus preserving the original bits.
|
|
||||||
//
|
|
||||||
// -AND op- ---expanded---
|
|
||||||
// __________ Clear only this bit.
|
|
||||||
// /
|
|
||||||
// 1110 1 1 1 0
|
|
||||||
// & 1011 1 0 1 1 (bit mask)
|
|
||||||
// ------ - - - -
|
|
||||||
// = 1010 1 0 1 0 <- This bit was already cleared.
|
|
||||||
// \_______\
|
|
||||||
// \
|
|
||||||
// These bits remain untouched because AND-ing with a
|
|
||||||
// 1 preserves the original bit value whether 0 or 1.
|
|
||||||
//
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// We can use the ~ (NOT) operator to easily create a bit mask like 1011:
|
|
||||||
//
|
|
||||||
// 1. First, shift the value 1 over two places with the bit-wise << (shift
|
|
||||||
// left) operator as indicated below:
|
|
||||||
// 1 << 0 -> 0001
|
|
||||||
// 1 << 1 -> 0010
|
|
||||||
// 1 << 2 -> 0100 <- The 1 has been shifted two places to the left
|
|
||||||
// 1 << 3 -> 1000
|
|
||||||
//
|
|
||||||
// 2. The second step in creating our bit mask is to invert the bits
|
|
||||||
// ~0100 -> 1011
|
|
||||||
// in C we would write this as:
|
|
||||||
// ~(1 << 2) -> 1011
|
|
||||||
//
|
|
||||||
// But if we try to compile ~(1 << 2) in Zig, we'll get an error:
|
|
||||||
// unable to perform binary not operation on type 'comptime_int'
|
|
||||||
//
|
|
||||||
// Before Zig can invert our bits, it needs to know the number of
|
|
||||||
// bits it's being asked to invert.
|
|
||||||
//
|
|
||||||
// We do this with the @as (cast as) built-in like this:
|
|
||||||
// @as(u4, 1 << 2) -> 0100
|
|
||||||
//
|
|
||||||
// Finally, we can invert our new mask by placing the NOT ~ operator
|
|
||||||
// before our expression, like this:
|
|
||||||
// ~@as(u4, 1 << 2) -> 1011
|
|
||||||
//
|
|
||||||
// If you are offput by the fact that you can't simply invert bits like
|
|
||||||
// you can in languages such as C without casting to a particular size
|
|
||||||
// of integer, you're not alone. However, this is actually another
|
|
||||||
// instance where Zig is really helpful because it protects you from
|
|
||||||
// difficult to debug integer overflow bugs that can have you tearing
|
|
||||||
// your hair out. In the interest of keeping things sane, Zig requires
|
|
||||||
// you simply to tell it the size of number you are inverting. In the
|
|
||||||
// words of Andrew Kelley, "If you want to invert the bits of an
|
|
||||||
// integer, zig has to know how many bits there are."
|
|
||||||
//
|
|
||||||
// For more insight into the Zig team's position on why the language
|
|
||||||
// takes the approach it does with the ~ operator, take a look at
|
|
||||||
// Andrew's comments on the following github issue:
|
|
||||||
// https://github.com/ziglang/zig/issues/1382#issuecomment-414459529
|
|
||||||
//
|
|
||||||
// Whew, so after all that what we end up with is:
|
|
||||||
// PORTB = PORTB & ~@as(u4, 1 << 2);
|
|
||||||
//
|
|
||||||
// We can shorten this with the &= combined AND and assignment operator,
|
|
||||||
// which applies the AND operator on PORTB and then reassigns PORTB. Here's
|
|
||||||
// what that looks like:
|
|
||||||
// PORTB &= ~@as(u4, 1 << 2);
|
|
||||||
//
|
|
||||||
|
|
||||||
print("Clear pins with AND and NOT on PORTB\n", .{});
|
print("Clear pins with AND and NOT on PORTB\n", .{});
|
||||||
print("------------------------------------\n", .{});
|
print("------------------------------------\n", .{});
|
||||||
|
|
||||||
@ -283,37 +151,222 @@ pub fn main() !void {
|
|||||||
newline();
|
newline();
|
||||||
newline();
|
newline();
|
||||||
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
// Conclusion
|
|
||||||
// ------------------------------------------------------------------------
|
|
||||||
//
|
|
||||||
// While the examples in this exercise have used only 4-bit wide variables,
|
|
||||||
// working with 8 bits is no different. Here's a an example where we set
|
|
||||||
// every other bit beginning with the two's place:
|
|
||||||
|
|
||||||
// var PORTD: u8 = 0b0000_0000;
|
|
||||||
// print("PORTD: {b:0>8}\n", .{PORTD});
|
|
||||||
// PORTD |= (1 << 1);
|
|
||||||
// PORTD = setBit(u8, PORTD, 3);
|
|
||||||
// PORTD |= (1 << 5) | (1 << 7);
|
|
||||||
// print("PORTD: {b:0>8} // set every other bit\n", .{PORTD});
|
|
||||||
// PORTD = ~PORTD;
|
|
||||||
// print("PORTD: {b:0>8} // bits flipped with NOT (~)\n", .{PORTD});
|
|
||||||
// newline();
|
|
||||||
//
|
|
||||||
// // Here we clear every other bit beginning with the two's place.
|
|
||||||
//
|
|
||||||
// PORTD = 0b1111_1111;
|
|
||||||
// print("PORTD: {b:0>8}\n", .{PORTD});
|
|
||||||
// PORTD &= ~@as(u8, 1 << 1);
|
|
||||||
// PORTD = clearBit(u8, PORTD, 3);
|
|
||||||
// PORTD &= ~@as(u8, (1 << 5) | (1 << 7));
|
|
||||||
// print("PORTD: {b:0>8} // clear every other bit\n", .{PORTD});
|
|
||||||
// PORTD = ~PORTD;
|
|
||||||
// print("PORTD: {b:0>8} // bits flipped with NOT (~)\n", .{PORTD});
|
|
||||||
// newline();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// ************************************************************************
|
||||||
|
// IN-DEPTH EXPLANATIONS BELOW
|
||||||
|
// ************************************************************************
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// Toggling bits with XOR:
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// XOR stands for "exclusive or". We can toggle bits with the ^ (XOR)
|
||||||
|
// bitwise operator, like so:
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// In order to output a 1, the logic of an XOR operation requires that the
|
||||||
|
// two input bits are of different values. Therefore, 0 ^ 1 and 1 ^ 0 will
|
||||||
|
// both yield a 1 but 0 ^ 0 and 1 ^ 1 will output 0. XOR's unique behavior
|
||||||
|
// of outputing a 0 when both inputs are 1s is what makes it different from
|
||||||
|
// the OR operator; it also gives us the ability to toggle bits by putting
|
||||||
|
// 1s into our bitmask.
|
||||||
|
//
|
||||||
|
// - 1s in our bitmask operand, can be thought of as causing the
|
||||||
|
// corresponding bits in the other operand to flip to the opposite value.
|
||||||
|
// - 0s cause no change.
|
||||||
|
//
|
||||||
|
// The 0s in our bitmask preserve these values
|
||||||
|
// -XOR op- ---expanded--- in the output.
|
||||||
|
// _______________/
|
||||||
|
// / /
|
||||||
|
// 0110 1 1 0 0
|
||||||
|
// ^ 1111 0 1 0 1 (bitmask)
|
||||||
|
// ------ - - - -
|
||||||
|
// = 1001 1 0 0 1 <- This bit was already cleared.
|
||||||
|
// \_______\
|
||||||
|
// \
|
||||||
|
// We can think of these bits having flipped
|
||||||
|
// because of the presence of 1s in those columns
|
||||||
|
// of our bitmask.
|
||||||
|
//
|
||||||
|
// Now let's take a look at setting bits with the | operator.
|
||||||
|
//
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// Setting bits with OR:
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// We can set bits on PORTB with the | (OR) operator, like so:
|
||||||
|
//
|
||||||
|
// var PORTB: u4 = 0b1001;
|
||||||
|
// PORTB = PORTB | 0b0010;
|
||||||
|
// print("PORTB: {b:0>4}\n", .{PORTB}); // output: 1011
|
||||||
|
//
|
||||||
|
// -OR op- ---expanded---
|
||||||
|
// _ Set only this bit.
|
||||||
|
// /
|
||||||
|
// 1001 1 0 0 1
|
||||||
|
// | 0010 0 0 1 0 (bit mask)
|
||||||
|
// ------ - - - -
|
||||||
|
// = 1011 1 0 1 1
|
||||||
|
// \___\_______\
|
||||||
|
// \
|
||||||
|
// These bits remain untouched because OR-ing with
|
||||||
|
// a 0 effects no change.
|
||||||
|
//
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// To create a bit mask like 0b0010 used above:
|
||||||
|
//
|
||||||
|
// 1. First, shift the value 1 over one place with the bitwise << (shift
|
||||||
|
// left) operator as indicated below:
|
||||||
|
// 1 << 0 -> 0001
|
||||||
|
// 1 << 1 -> 0010 <-- Shift 1 one place to the left
|
||||||
|
// 1 << 2 -> 0100
|
||||||
|
// 1 << 3 -> 1000
|
||||||
|
//
|
||||||
|
// This allows us to rewrite the above code like this:
|
||||||
|
//
|
||||||
|
// var PORTB: u4 = 0b1001;
|
||||||
|
// PORTB = PORTB | (1 << 1);
|
||||||
|
// print("PORTB: {b:0>4}\n", .{PORTB}); // output: 1011
|
||||||
|
//
|
||||||
|
// Finally, as in the C language, Zig allows us to use the |= operator, so
|
||||||
|
// we can rewrite our code again in an even more compact and idiomatic
|
||||||
|
// form: PORTB |= (1 << 1)
|
||||||
|
|
||||||
|
// So now we've covered how to toggle and set bits. What about clearing
|
||||||
|
// them? Well, this is where Zig throws us a curve ball. Don't worry we'll
|
||||||
|
// go through it step by step.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// Clearing bits with AND and NOT:
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// We can clear bits with the & (AND) bitwise operator, like so:
|
||||||
|
|
||||||
|
// PORTB = 0b1110; // reset PORTB
|
||||||
|
// PORTB = PORTB & 0b1011;
|
||||||
|
// print("PORTB: {b:0>4}\n", .{PORTB}); // output -> 1010
|
||||||
|
//
|
||||||
|
// - 0s clear bits when used in conjuction with a bitwise AND.
|
||||||
|
// - 1s do nothing, thus preserving the original bits.
|
||||||
|
//
|
||||||
|
// -AND op- ---expanded---
|
||||||
|
// __________ Clear only this bit.
|
||||||
|
// /
|
||||||
|
// 1110 1 1 1 0
|
||||||
|
// & 1011 1 0 1 1 (bit mask)
|
||||||
|
// ------ - - - -
|
||||||
|
// = 1010 1 0 1 0 <- This bit was already cleared.
|
||||||
|
// \_______\
|
||||||
|
// \
|
||||||
|
// These bits remain untouched because AND-ing with a
|
||||||
|
// 1 preserves the original bit value whether 0 or 1.
|
||||||
|
//
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// We can use the ~ (NOT) operator to easily create a bit mask like 1011:
|
||||||
|
//
|
||||||
|
// 1. First, shift the value 1 over two places with the bit-wise << (shift
|
||||||
|
// left) operator as indicated below:
|
||||||
|
// 1 << 0 -> 0001
|
||||||
|
// 1 << 1 -> 0010
|
||||||
|
// 1 << 2 -> 0100 <- The 1 has been shifted two places to the left
|
||||||
|
// 1 << 3 -> 1000
|
||||||
|
//
|
||||||
|
// 2. The second step in creating our bit mask is to invert the bits
|
||||||
|
// ~0100 -> 1011
|
||||||
|
// in C we would write this as:
|
||||||
|
// ~(1 << 2) -> 1011
|
||||||
|
//
|
||||||
|
// But if we try to compile ~(1 << 2) in Zig, we'll get an error:
|
||||||
|
// unable to perform binary not operation on type 'comptime_int'
|
||||||
|
//
|
||||||
|
// Before Zig can invert our bits, it needs to know the number of
|
||||||
|
// bits it's being asked to invert.
|
||||||
|
//
|
||||||
|
// We do this with the @as (cast as) built-in like this:
|
||||||
|
// @as(u4, 1 << 2) -> 0100
|
||||||
|
//
|
||||||
|
// Finally, we can invert our new mask by placing the NOT ~ operator
|
||||||
|
// before our expression, like this:
|
||||||
|
// ~@as(u4, 1 << 2) -> 1011
|
||||||
|
//
|
||||||
|
// If you are offput by the fact that you can't simply invert bits like
|
||||||
|
// you can in languages such as C without casting to a particular size
|
||||||
|
// of integer, you're not alone. However, this is actually another
|
||||||
|
// instance where Zig is really helpful because it protects you from
|
||||||
|
// difficult to debug integer overflow bugs that can have you tearing
|
||||||
|
// your hair out. In the interest of keeping things sane, Zig requires
|
||||||
|
// you simply to tell it the size of number you are inverting. In the
|
||||||
|
// words of Andrew Kelley, "If you want to invert the bits of an
|
||||||
|
// integer, zig has to know how many bits there are."
|
||||||
|
//
|
||||||
|
// For more insight into the Zig team's position on why the language
|
||||||
|
// takes the approach it does with the ~ operator, take a look at
|
||||||
|
// Andrew's comments on the following github issue:
|
||||||
|
// https://github.com/ziglang/zig/issues/1382#issuecomment-414459529
|
||||||
|
//
|
||||||
|
// Whew, so after all that what we end up with is:
|
||||||
|
// PORTB = PORTB & ~@as(u4, 1 << 2);
|
||||||
|
//
|
||||||
|
// We can shorten this with the &= combined AND and assignment operator,
|
||||||
|
// which applies the AND operator on PORTB and then reassigns PORTB. Here's
|
||||||
|
// what that looks like:
|
||||||
|
// PORTB &= ~@as(u4, 1 << 2);
|
||||||
|
//
|
||||||
|
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
// Conclusion
|
||||||
|
// ------------------------------------------------------------------------
|
||||||
|
//
|
||||||
|
// While the examples in this quiz have used only 4-bit wide variables,
|
||||||
|
// working with 8 bits is no different. Here's a an example where we set
|
||||||
|
// every other bit beginning with the two's place:
|
||||||
|
|
||||||
|
// var PORTD: u8 = 0b0000_0000;
|
||||||
|
// print("PORTD: {b:0>8}\n", .{PORTD});
|
||||||
|
// PORTD |= (1 << 1);
|
||||||
|
// PORTD = setBit(u8, PORTD, 3);
|
||||||
|
// PORTD |= (1 << 5) | (1 << 7);
|
||||||
|
// print("PORTD: {b:0>8} // set every other bit\n", .{PORTD});
|
||||||
|
// PORTD = ~PORTD;
|
||||||
|
// print("PORTD: {b:0>8} // bits flipped with NOT (~)\n", .{PORTD});
|
||||||
|
// newline();
|
||||||
|
//
|
||||||
|
// // Here we clear every other bit beginning with the two's place.
|
||||||
|
//
|
||||||
|
// PORTD = 0b1111_1111;
|
||||||
|
// print("PORTD: {b:0>8}\n", .{PORTD});
|
||||||
|
// PORTD &= ~@as(u8, 1 << 1);
|
||||||
|
// PORTD = clearBit(u8, PORTD, 3);
|
||||||
|
// PORTD &= ~@as(u8, (1 << 5) | (1 << 7));
|
||||||
|
// print("PORTD: {b:0>8} // clear every other bit\n", .{PORTD});
|
||||||
|
// PORTD = ~PORTD;
|
||||||
|
// print("PORTD: {b:0>8} // bits flipped with NOT (~)\n", .{PORTD});
|
||||||
|
// newline();
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
// Here are some helper functions for manipulating bits
|
// Here are some helper functions for manipulating bits
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
|
Loading…
x
Reference in New Issue
Block a user